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Formal expressions are derived for the effective thermal conductivity Kij of 
randomly dispersed suspensions undergoing shear. These are then evaluated for 
the cases of dilute suspensions of cylinders and of spheres when the bulk motion 
is 8 simple shear, the Pbclet number Pe is large, and the particle Reynolds number 
is small enough for inertia effects to be negligible. It is shown that as Pe+m 
the presence of shear can significantly affect the O($)  contribution to K i j  (9 
being the volume fraction of the solids), which becomes independent of k*, the 
thermal conductivity of the suspended material. This results from the presence 
of regions of closed streamlines surrounding each particle which, for sufficiently 
large Pe, attain an isothermal state and therefore act as regions of infinite 
conductivity. 

1. Introduction 
Many studies have appeared in the literature over the past few years dealing 

with the transport properties of suspensions or of composites containing random 
dispersions of small particles under conditions where the heterogeneous system 
behaves like a homogeneous material on a macroscale. Their aim has been t o  
derive expressions for the effective or bulk parameters of such composites given 
the properties of the individual phases as well as the geometry and spatial dis- 
tribution of the particles in the suspending medium. Familiar examples include 
studies of the effective viscosity of suspensions of solid spheres, the rheology of 
emulsions, the effective thermal, magnetic and elastic properties of composite 
materials, and many others, all of which can generally be developed within a, 
common theoretical fiamework. This has been illustrated recently by Batchelor 
(1974), who has also reviewed some of the more significant contributions to the 
subject. 

The problem of determining Ki j ,  the effective thermal conductivity of sus- 
pensions, with which we shall be concerned here, appears to have been first 
posed by Maxwell, who in 1873 successfully treated the case of an infinitely dilute 
dispersion of solid spheres. Maxwell’s result was then extended by numerous 
investigators, and most recently by Rocha & Acrivos (1973), who gave expressions 
for K,, correct to O(4) for dilute composites containing inclusions of arbitrary 
shape ($ = volume fraction of solids in the suspension). With the exception of a 
recent study by Leal (1973), however, all previous investigations on this topic 
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have been restricted to stationary media with the result that little is known 
regarding the extent to which Kii can be enhanced by the presence of relative 
motion between the two phases comprising the system. Here we shall investigate 
this effect: specifically, the degree to which the O(q5) contribution to Kii will be 
affected by the presence of convection in a flowing suspension. 

Our analysis will adopt a point of view which, by now, is a conventional one 
in the field of suspension rheology (Batchelor 1970). Specifically, we suppose t h a t  
there exists in the sample a volume V which contains a statistically significant 
number of particles and whose linear dimensions, O( V*), are much larger than 
I, the characteristic dimension of the individual particles, but much smaller 
than the macroscale L over which significant bulk temperature variations take 
place. Each variable in the domain, e.g. the temperature T, is then expressed 
as the sum of a bulk quantity p and a fluctuation t’, where p is defmed as the 
average of the local temperature over the sample volume V ,  or as an ensemble 
average over a statistically significant number of realizations. An important 
consequence of the inequality I < V i  < L is that the bulk variables thus defined 
are independent of the size and shape of V and vary over distances O(L), and 
that the fluctuating quantities vary randomly over distances O(2) owing to the 
assumed random location of the particles in the dispersion. The bulk transport 
coefficients can then be obtained, in principle at least, in a straightforward 
manner after the fluctuating quantities have first been determined from the 
solution, on a microscale, of the appropriate conservation equations. 

Using this approach, we derive in the next section formal expressions for 
the bulk heat flux Qr and for the corresponding effective thermal conductivity 
Kri which include the convective effects in a flowing suspension. Then, in @3 
and 4 we obtain some results for a dilute suspension of cylinders or of spheres 
when the bulk motion is a simple shear flow and when inertia effects on the scale 
of the particle size E are negligible. In  contrast to Leal (1973), who derived an 
expression for the transverse conductivity of a sheared dilute suspension of 
spherical drops in the limit of low PBclet number Pe, we shall deal here only 
with the case Pe % 1, where the effects due to convection are expected to be 
most significant. We also note that the present analysis applies, of course, equally 
well to problems in mass transfer provided only that the appropriate terminology 
is employed. 

2. General theory 
Consider a suspension of neutrally buoyant particles which is homogeneously 

dispersed in a viscous incompressible fluid in the presence of a bulk shear and a 
bulk temperature field. We wish to construct a macroscopic heat conservation 
equation and a constitutive relation for the various bulk quantities which des- 
cribe the suspension as an equivalent homogeneous material. Hence, in the 
absence of viscous dissipation terms, the desired energy equation for the sus- 
pension is 
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with H being the bulk enthalpy, V, the bulk velocity and Qi the bulk conductive 
heat flux. For the case of a time-independent, linearly varying bulk temperature 
field, with which we shall be ex6lusively concerned here, Qi is related to  the bulk 
temperature gradient ap/axj via a Fourier law 

Qi + Ki j  @/ax, = 0, (2.2) 

Ktj  being referred to as the effective thermal conductivity of the suspension. 
As may be seen by substituting (2.2) into the steady-state form of (2.1), a linearly 
varying time-independent bulk temperature field can exist only if U, aH/ax, 3 0, 
a condition which we shall henceforth assume to be satisfied. Thus it should be 
carefully kept in mind that Kij is not a tensor, in spite of the notation used here, 
because, for a given orientation of the bulk velocity &, (2.2) applies only for a 
restricted class of bulk temperature fields. 

The microscopic heat equation describing the pointwise energy balance in 
either the continuous fluid or the inclusions is of course 

ah ah aq. 
-+ui-+2 = 0, 
a7 ax, ax, 

where h, u, and qi all denote local quantities. As mentioned in the introduction, 
the velocity and the enthalpy in (2.3) are now expressed as the sum of the 
appropriate bulk quantities and the corresponding local fluctuations u; and h’, 
and (2.3) is averaged either over V or over many realizations. Then, taking into 
account that (h’) = (u;) = 0, where the brackets denote the averaging operator, 
we arrive at the bulk conservation relation 

which, by comparison with (2.1), readily identifies the bulk conductive heat 
flux as 

It should be noted here that, for systems containing non-spherical inclusions, 
the product u; h’ may in general be time dependent since, for example, elongated 
particles rotating periodically in a simple shear field spend most of each period 
aligned with the direction of the undisturbed flow. Consequently, in cases where 
ensemble averages are replaced by volume averages, the sample volume V should 
contain a statistically significant number of particles having a representative 
distribution of orientations, while if time averages are employed to compute the 
bulk quantities, the averaging time should be large enough to contain a statistic- 
ally significant number of the rotation periods mentioned above. 

In terms of the temperature and the physical properties of the individual 
phases, the convective term in (2.5) becomes 

Qi (q,) + (uih’). (2.5) 

where V is again the sample volume, V* denotes the volume of an inclusion 
within V ,  and p, cp and c& assumed temperature independent, are, respectively, 

3-2 



36 A .  Nir and A ,  Acrivos 

the density and the heat capacities of the continuous and dispersed phases. 
Then, in view of Fourier’s law and (2.6). (2.5) reduces to 

(2.7) 

where k and k* are the thermal conductivities of the individual phases. Equation 
(2.7) explicitly defines Ki, in the general case. It suggests, at &st perhaps rather 
surprisingly, that even when the physical properties of the continuous and dis- 
persed phases are identical the existence of a shear field may still alter the effective 
thermal conductivity from that of the pure materials. Indeed, in his recent 
study of the effective conductivity of a suspension containing spherical droplets 
in a simple shear field, Zeal (1973) has confirmed this prediction for cases in 
which the particle P6clet number Pe is small, and has shown that, when k = k*, 
the transverse conductivity, denoted here by K,,, is given by 

2+5v a K,,= 1+0.12 - 
k ( i f v )  

where Pe = pcpa2G/k, a being the strength of the bulk rate of strain, a the 
radius of the droplets and $ their volume fraction, and v 3 p*/p the ratio 
of the viscosities. Evidently, since (2.8) applies only when Pe < 1, tbe increase 
in K , ~  E (K,,/k- l)/$ is small under the above conditions, but appreciable 
effects are to be expected when the P6clet number is large. I n  fact, i t  will be shown 
in the following sections that, in some cases and for sufficiently large Pe, the 
components of K(, become independent of the thermal conductivity of the dis- 
persed phase and attain values relative to those for pure heat conduction which 
are much larger than in the corresponding case of small Pe. 

We also wish to  note that the bulk enthalpy H is not necessarily related to the 
bulk temperature by H = p(c,) F ,  with (c,) being the volume-weighted average 
heat capacity, since from the definition 

(2-9) 

it follows readily that 

(2.10) 

Consequently, the macroscopic heat equation cannot generally be expressed in 
terms of the bulk temperature gradient, i.e. as 

unless either t’dV* = 0 LV* 
(2.11) 

or, of course, cp = c:. It is of interest to note that, in the examples of $93 and 4, 
(2.1 1) is satisfied in a steady state. 
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We shall now consider two relatively simple cases for which some definitive 
results can be obtained. These will be derived by determining the corresponding 
temperature field around an isolated particle placed in an infinite domain and 
then applying (2.7). Although this is a standard practice in suspension rheology 
for dilute systems, to which the present analysis is confined, we wish to note, 
nevertheless, that such a procedure replaces the statistically random fields by 
deterministic solutions, the result being that the disturbance variables often do 
not vanish when averaged over any representative volume. This difficuIty 
arises in other problems as well, for example the evaluation of the first-order 
interaction effect in the sedimentation rate of spheres in a quiescent fluid 
(Batchelor 1972) or the calculation of the O(q52) term in the expression for the 
bulk stress of a suspension of spherical particles (Batchelor Q Green 1972), and 
must be properly taken into account in the theory. 

3. Infinite cylinders in a simple shear 
The temperature Jield 

Let us consider a simple shear flow past an infinite circular cylinder, freely rotat- 
ing and with its axis normal to the plane of flow, in the presence of a bulk tem- 
perature field linear in x2, so that ?&ap/axi = 0. If inertia effects on the scale of 
the cylinder radius are assumed negligible, the stream function is given by (e.g. 
Cox, Zia & Mason 1968) 

where ui is the velocity, xi is the position vector and r is the radial distance, all 
relative to  an origin at the centre of the cylinder. The velocities and distances 
have been normalized such that ui = Silx2 at infinity and r = 1 on the cylinder, 
where the stream function has been set equal to - 4. 

As shown by Cox et d. (1968), the flow field consists of two regions. In the 
first, where - a  < + < 0, all streamlines are closed and a fluid element on a 
atreamline orbits along a constant trajectory indefinitely; in the other, for which 
0 < @ < cg, all streamlines are open and originate at infinity. It should be noted 
for future reference that the region of closed streamlines extends to infinity in 
both directions along the x1 axis. 

= x, 
[this satisfies the condition ?&aH/ax;, = 0, briefly discussed following (2.2)], 
which serves as the boundary condition at infinity for the temperature field 
near the cylinder. This temperature field satisfies the following heat equation, 
expressed in terms of $ and an orthogonal co-ordinate 7 with metric co- 
efficient g: 

As the bulk temperature has been set equal to zero at the origin, 

q being the speed and Pe the P6clet number pc3,a2U/k, with a the radius of the 
cylinder. 
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We next seek a solution to (3.2) for the case of large Pe by means of a regular 
perturbation expansion in both the closed- and the open-streamline region; i.e., 
with Pe-1 the small parameter, we suppose that 

T = TO+Pe-lTl+ ... . (3.3) 

I n  view of (3.2), it is clear that To is a function of $ only which, for $ > 0, can 
easily be determined from the known temperature profile at infinity. For the 
region of closed streamlines, however, such 'upstream information ' is of course 
not available and we must resort to a compatibility condition (cf. Pan & Acrivos 
1968) which requires that, in a steady state and in the absence of any sources or 
sinks in the fluid, the integrated heat flux across any closed streamline be a 
constant. In  our case this constant is simply zero and, hence, taking into account 
the symmetry of the system, we conclude immediately that, to all orders in 
Pe-l, T = 0 within the cylinder and for - t < $ < 0 except, possibly, in a thin 
layer along $ = 0. In  other words, to this order of approximation, the value of 
T within the cylinder plus the region of closed streamlines equals that of the bulk 
temperature at the origin. 

This result has some rather striking consequences. First of all, i t  is clear from 
(2.7) that, since the particle is embedded in a region of constant temperature, 
the bulk conductive heat flux, and therefore K,,, will be independent of k*, i.e. 
perfectly conducting particles will have exactly the same effect on Kii as insu- 
lating inclusions. Moreover, since a region of constant temperature effectively 
corresponds to a region composed of a perfect conductor, it is anticipated that 
its existence will be reflected in a significant enhancement of the O(q5) term in 
the expression for Kif  relative to that for an equivalent stationary suspension. 

Returning now to the solution of our problem, we see that for 0 < 9 < oc), 
i.e. in the region of open streamlines, 

To = f (2$)+,  (3.4) 

where the positive and negative signs refer, respectively, to the upper and lower 
half-planes. Thus, upon substituting To in (3.3) we obtain the equation for T,: 

which upon integration becomes, in the upper half-plane, 

where 7 = 0 denotes the x2 axis. 
We note, for further use, that, as can easily be shown, the integral 

in which u, is the r velocity component and R($) the value of r along the x2 
axis, is absolutely convergent for all 9 > 0. It is evident, however, that (3.3) 
is not a uniformly valid expansion in Pe-l for all $ > 0 since Tl becomes singular 
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as @-+ 0. The existence of this singularity indicates, of course, the presence of a 
thin thermal layer along 9 = 0, where the convective and the conductive terms 
of (3 .2)  are of comparable magnitude owing to the large temperature gradients 
across the limiting streamline. Within this layer the curvature and the conduction 
terms of (3 .2)  along @ = 0 play a secondary role, so that, after stretching the 
variables in the customary manner, we obtain 

with boundary conditions 

T-+Pe-i(ZY)# as Y+m, T+O as Y-t-cu. (3 .8)  

Therefore we need to distinguish three temperature regions: (a)  an isothermal 
region of closed streamlines where - $ < @ < 0;  (b )  an ‘outer’ region E < $ 6 00, 

with E small and fixed, where convection predominates and where T is given by 
(3 .2) ,  (3 .4)  and (3 .5) ;  and (c )  a boundary-layer-type region of lateral dimensions 
0(Pe-4)  where T satisfies (3 .7)  and (3 .8 ) .  As we shall see presently, this boundary 
layer plays an important role in the determination of the transverse conductivity 

The effective thermal conductivity 

As indicated in (2.7), Kii is found from the bulk conductive heat flux, which, in 
this case, reduces to 

K22. 

because the temperature is constant within each particle. Moreover, for dilute 
suspensions for which particle-particle interactions can be assumed negligible, 
the integrals in (3 .9)  become simply 

n P e J  uit’d V ,  nc* 2 P e s v *  uit’d V* 
vl- v* CP 

(3.10) 

respectively, where n is the particle concentration, V, (B u3) is a volume within 
V containing a single inclusion, and V* refers to the space within a single cylinder. 
I n  addition, though, 

within V*, and hence 
t ’ =  -x2, u;=  - q a  2 a 1  x 2 +  aa2Xl) 

where qi is the volume fraction of the solids in the suspension. Therefore the 
expression for the Kd2, which we emphasize once again are not the components 
of a tensor, becomes in a simple shear flow and for P e  -+ 00 

(3.11) 

We next turn to the evaluation of K22,  which is the most significant and 
interesting component of Kij since its value reflects the enhancement of the 
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heat flux perpendicular to the direction of the flow resulting from the effects of 
convection. This requires the determination of the last term in (3.11) with 

(3.12) 

As mentioned earlier in this section, there exist three distinct regions of the 
temperature field as Pe --f co. In  the region of closed streamlines, - a < @ < 0, 
we have again that t’ = -x2 to all orders in Pe-1, and hence the corresponding 
part of the integral in (3.11) becomes 

(3.13) 

where r = R(8) = R( -8) = R(n- 0)  denotes the limiting streamline @ = 0. We 
further note that, along @ = 0, 

xi = (2r2)-1{1+O(r-2)) as r-fco,  

and that ub = ( -x1/r4){l + O(r-2)) as r+00 

within the region of closed streamlines. The integral in (3.13) is, therefore, ab- 
solutely convergent and its value is easily seen to be zero owing to the symmetry 
of R(8) and the fact that u; is odd in x, and even in x2. Thus, for the purposes of 
evaluating the last term in (3.11), we need only consider the contribution from 
the ‘outer’ region e Q @ < 00 plus that of the thin thermal layer along the $ = 0 
streamline. 

Let us then turn to the outer region, where in view of (3.3)-(3.6) we have, in 
the upper half-plane x, 2 0, 

The first integral to be considered is therefore 

Jv+ u;{(2@)* --X,)dVY 

(3.14) 

(3.15) 

where V+ refers to the outer region e Q @ Q 00. However, in view of (3.1) and 
(3.12) 

u;{(2$)* - x2} 3 2x1x~/# + o(r-4) as r -+ a, (3.16) 

and hence the integral (3.15) is only conditionally convergent as r+ 00, its value 
being determined by the order of integration as well as by the size and shape of 
V+. This difficulty, which, as mentioned in the introduction, is also encountered 
in many other studies involving two-phase systems (Batchelor 1974), arises from 
the fact that, in replacing the term 

u:t’dV v V - Z V .  
(3.17) 

of (3.9) by the first integral in (3.10), particle-particle interactions have been 
assumed negligible to a first approximation. Unfortunately, owing to the slow- 
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ness with which the disturbance variables u6 and t' approach zero with increasing 
r, this assumption is not quite valid, so that the presence of the other particles 
in the suspension, in addition to the reference cylinder, must be considered in 
evaluating (3.9) even when n-f  0. A method for achieving this, recently proposed 
by Batchelor (1972), is to look for a disturbance quantity which has the same 
asymptotic dependence relative to the position of one cylinder as (3.16) and 
whose bulk value is known, and then to modify the integrand in (3.17) such that 
the integral is absolutely convergent. I n  the present case, such a disturbance 
quantity is 

1 au;/ax, - w, (3.18) 

where p' = - 42, x 2 p  is the dimensionless pressure obtained from the creeping- 
flow equation 

Therefore, since the integral of (3.18) over V* vanishes, and since 

aptlaxi = vzu;. 

(au;lax,-pl> = o,? 
we can replace (3.17), with i = 2,  by 

Pe 
4 ax, 

which is absolutely convergent. Hence, noting that the integral of (3.18) over 
the region of closed streamlines also vanishes, the above reduces, as n+ 0, to 

which is easily seen to vanish since u6, au;/ax, and p' are odd in x1 while (2$)* 
is even. Of course, this result should have been anticipated because, since the 
integral in (3.15) should be unaffected by a reversal in the flow direction, its 
value must be zero. The argument presented above is, however, somewhat more 
satisfying and leaves no doubt regarding the final conclusion. 

Let us next evaluate the leading contribution to K,, arising from the thermal 
layer. We note first of all that, in view of the small thickness of this layer, (3.7) 
and (3.8) can also be expressed as 

1 
T - f - ( 2 Y ) )  as Y-fco, 

8T a2T 
a7 - QoSo* Pe) 
_ -  (3.19) 

where q0(y)  and go(q) refer to the corresponding variables calculated dong the 
limiting streamline @ = 0. Therefore, with X(Y)  denoting the Heaviside func- 
tion, we have that, within the thermal layer, 

t Because of symmetry, p', defined everywhere as -&&, with u;, the fluctuating 
stress, integrates to zero within the particle. 
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However, since ui is also approximately constant and equal to ui0 across the 
thermal layer, we have that as Y? + co 

where for the purpose of evaluating K,, we can omit the function C(Y) because 
the absolutely convergent integral 

O0 %god7 = 0. 
S - m  96 

Hence the first non-zero contribution to the O ( 4 )  term of K2, results from the 
function Tl of (3.5) plus the second term of (3.20). Specifically, since the absolutely 
convergent integral 

because a; is odd in q while g and q are even, we obtain 

(3.21) 

Unfortunately, a careful examination of (3.21) reveals that it is not a conver- 
where 4 is the volume fraction of the particles. 

gent integral as ?lo and ql +- co, its asymptotic form being 

- Nln V O l 2  + (In %)21 + O(ln 70) + O(lnV1). (3.22) 

This can be shown by noting that, for @ < 1, the integrand in (3.21) reduces, 
following integration by parts, to 

(3.23) 

and 

B being an 0 ( 1 )  number. Therefore, when Ipl B 1 and @ < 1, (3.23) simplifies to 

from which (3.22) follows readily. 
The reason for the singularity in (3.21) can be traced to the simplification 

introduced in (3.7), where it was assumed that q could be replaced by po, which 
led to (3.19). As is evident, however, from the expression given above for q, this 
is only permissible provided that 171 c O(Pef). Thus, when 171 3 O(Pei), the 
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equation within the thermal layer becomes, in lieu of (3.19), 

(3.24) 

the solution to which, as I f 1  +a, can be shown to approach (2Y)*.3?'(Y) suffi- 
ciently rapidly for the integrals 

with fixed (Tjo, q,) = Pe-t(ro, r,), to exist. Furthermore, in view of ( 3 4 ,  

B,(r]) being O(1); hence, because of the matching requirement between this outer 
aolution and the temperature within the thermal layer, ? in (3.24) and, there- 
fore, the integrals (3.25) for fixed ?jo and f l  are at most O(1nPe). Since the expres- 
sion for K,, must be independent of the choice of ?j,, and T,, it  then follows that 
the leading term of (3.21) plus (3.25) equals - [lnPef]2, i.e. 

K,,/k = 1 +(2*q5)/16n){(lnPe)2+O(lnPe)+0(1)}, (3.26) 

which completes our derivation of the asymptotic form of K,,. 
To be sure, (3.26) is rather useless from the practical point of view since the 

o[(h~Pe)~] term dominates the other two only if P e  is truly extremely large, but, 
unfortunately, the calculation of the remaining terms in (3.26) would require 
the solution of (3.24) subject to complicated boundary and matching conditions. 
Thia will not be attempted here and hence, again from a practical standpoint, 
(3.26) is incomplete. Nevertheless, it  is felt t ha t  the analysis leading to (3.26) 
bof some interest, because it clearly brings out many of the physically significant 
features of this problem. 
We complete our discussion with regard to a dilute suspension of cylinders in 

ti simple shear by deriving the corresponding asymptotic expression, as Pe -f co, 
for KI2, which, in view of (3.1 1), requires the determination of 

u;t'dY. 
V*-V* 

(3.27) 

It can easily be shown from (3.1) and (3.4) though that the term 

~ ; { ( 2 ~ ) 3 - ~ , } + 2 ~ 2 , ~ ~ / r s +  op4) 
I r+co, and hence the integral (3.27) is absolutely divergent as the dimensions 
tdK me increased without bound. Hence it would seem rather unlikely that there 
b'rists a fluctuating quantity having the same asymptotic behaviour as uit but 
whose bulkvalue is known which could be used to convert (3.27) into an absolutely 
pavergent integral as was done earlier with (3.15). This suggests in turn that, 
Lethe present case, particle-particle interactions cannot be neglected in deriving 
@ expression for K,, even when q5 3 0, and that the linear dimensions of V, 
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must be taken as O(q54), rather than infinite as has been assumed up to now. 
Consequently, (3.27) becomes - +n In q5 + O( 1) and hence 

(3.28) 

It is of some interest that K12 is negative. 
K12P = mq5 {In # + O(1)). 

4. Spherical particles in a simple shear 
The temperature jield 

The evaluation of the temperature field for the present problem is in most 
respects similar to that described in $3. Specifically, with u, = V, = ~ , 6 ~ ,  at 
infinity, the streamlines are the intersection curves of the two families of surfaces 
of revolution (cf. Cox et al. 1968) 

(4.1) I E = xt/r2f2(r)-fl(r), -fl(l) < E c co, 
C = x3/rf(r),  -Cmax(E) < C Q Cmax(E), 

f ( r )  = [r3- Q + j~-~]-*, f l ( r )  = p-sf(p) dp. where 

Again there exist closed streamlines, which are formed when E lies in the interval 
-fl(l) Q E < 0, where E = -fl(l) denotes the surface of the sphere and E = 0 
the so-called limiting stream surface. For E 2 0 and - co c C < 00 all streamlines 
are open and originate at upstream infinity. 

= x2, the stream surfaces 
E are isothermal to a first approximation and hence, by analogy with the results 
of the previous section, we conclude that the temperature of the region of closed 
streamlines is zero except in a thin region near E = 0. Thus (3.9) holds once again 
and, as in the two-dimensional case, the conductivity of the inclusion does not 
affect the bulk heat flux. 

I n  the outer region, in which the stream surfaces originah at infinity, where 
E = x: and 

ITW 

As with the cylinder problem, at large Pe and with 

= x2, we obtain, once again by analogy with (3.4) and ( 3 4 ,  

To= +E* ' (4.2) 

and q = q +I7 { - VEI E d  + 4(V2E) E a }  gh,dy, (4.3) 
0 

where the integration is along a streamline and g is the metric coefficient of the 
variable 7. Of course, there exists also a thin region along the limiting stream 
surface where conduction normal to E = 0 becomes comparable to convection 
along streamlines on that surface, and in which the dominant terms of the heat 
equation are 

(4.4) 

where VE, V2E, q and g are functions of all three dimensions. It is evident that, 
except as noted later on, the first term on the right-hand side of (4.4) dominates 
the second within this thermal layer and thus (4.4) can be further reduced to 

T - t P e a p *  as b-tco, T+O aa 8+-co. 
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The effective thermal conductivity 
As in $3, we shall consider separately the evaluation of K12 and K,,. To begin 
with, we recall (3.9) and (3.10) and evaluate the integral within the spherical 
inclusion. Since, again, within the particle 

it is evident that 
t’ = -x2, U ;  = - 4(8i1~2 + 8iax1), 

and therefore the expression for Ki, [analogous to (3.11)] becomes 

We now proceed with the evaluation of Ks. The components of the distur- 
bance velocity are given by (Cox et al. 1968) 

hence the contribution to the integral in (4.6) from the region of closed stream- 
lines, where - f l (r)  < E < 0 and t = -x2, is 

-/vu;x,dV, -fl(l) < E < 0. (4.8) 

At large distances, f ( r )  = r-l+ O(r-*) and fl(r) = (3r3)-’+ O(+); hence, along 
the limiting stream surface E = 0, 

1 
xi = G+o(r&),  u’ - - 2r6 2(1+0(r-3)). 

It is now evident that the integral in (4.8) is absolutely convergent and its value 
is easily seen to be zero owing to the symmetries in the geometry of the region 
and the fact that u; is odd in xl and even in x, and x,. 

For the outer region we recall (4.2) and (4.3), which, in analogy with (3.14), 
give for the upper half-space 

t’ = E i - x  

The first-order contribution to K,, arises from 

4(E*-x,)dV, E 2 0, (4.10) 

in which, because of (4.1) and (4.7), the integrand is O(+) for E > 0 and O(P*) 
along E = 0 as r-foo. Evidently (4.10) is absolutely convergent and has value 
zero. 

Jv 
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It appears then that, as in the two-dimensional problem, the leading contri- 
bution to K,, results from 

c 

(4.11) 

plus the appropriate integral from the thermal layer that exists along the surface 
E = 0. Although the algebra is here somewhat different, the steps required to 
evaluate (4.11) using (4.3) and (4.5) are similar to those employed earlier in 
deriving (3.21) from (3.14) and (3.19). Thus we obtain 

where, again, the zero subscripts indicate quantities evaluated at E = 0 and hc 
is the metric coefficient of the co-ordinate C. There will be no contribution from 
the integral 

~ v u ; ~ l q = o d v ,  E =. 0, (4.13) 

Now, a careful examination of (4.12) reveals that, again, this is not a convergent 

- Ah4 + 7t> + 0(1) ,  (4.14) 

where A is a positive O(1) number. The above can be obtained by employing the 
asymptotic forms, for 171 

which converges absolutely and whose value is zero because of symmetry. 

integral when q0 and rl -+ a, its form being given by 

1 and E < 1, 

he = (1 - c2/72)-*, g = (1 - C2/72)-4, I 
in terms of which the integrand in (4.12) that gives the leading contribution to 
the O ( 4 )  term in K,, simplifies to (for 7 > 0 )  

dz 

dz 

S' 
sq 

1 - 
4E4 I 7 I $( 1 + 3E 17 I 3)* ( 1 - C2/r2)* c z#( 1 - c2/z2)* ( 1 + 3Ez3)* 

1 
4E%171Q(1 -C2/72)* C Z # ( ~  -C'/Z')*' 

+ 
Equation (4.14) then follows directly; the coefficient. A must of course be evalu- 
ated numerically. 

It is again evident that the approximations introduced in reducing (4.4) to  
(4.5) are not valid everywhere in the thermal layer. I n  fact, (4.5) applies only as 
long as 3E1713 < 1. When this is no longer the case, i.e. when 171 9 1 and Elqla 



The effective conductivity of sheared suspensions 47 

is O( l ) ,  we obtain, in lieu of (4.4) and in view of (4.15), 

(4.16) 

Clearly, when El7I3 is O(l),  the thickness of the thermal layer can no longer be 
O(Pe-*) since, in that case, conduction would play a secondary role in (4.16). 
Therefore, in order to maintain a proper balance between the conductive and 
the convective term of the energy equation, it is necessary to transform (4.16) 
into 

(4.17) 

where e = PeiW, 9 3 Pe-iT and (q, 8) = Pe-A(q, C). By analogy with (3.24),  
the corresponding equation of the cylinder problem of $3,  it appears safe to 
assume that, again, as IqI -+a the solution to (4.17) approaches @*#(J??) suffi- 
ciently rapidly for the integral in the expression for K,, containing the far-field 
temperature distribution along the limiting stream surface E = 0 to exist. 
This being the case, i t  is then an easy matter to estimate the order of magnitude 
of this integral using the transformations given by (4.17) and thereby show that 

K,,/k = 1 + ${A,Pe*O( I)}, (4.18) 

In contrast to the difficulties encountered in the two-dimensional case, the 
where A,  is a numerical coefficient to be evaluated from the solution of (4.17). 

integral 
n 

is here absolutely convergent. K,, then becomes 

(4.19) 

or K,,/k = - $Pe{0678+c~/10cp). 

Again, as with (3.28),  this non-diagonal component of Kt3 is negative. 
The analysis presented in $03 and 4 applies of course only to cases in which 

the particle Reynolds number Re is sufficiently small for inertia effects to be 
negligible. Naturally, the presence of such effects would have a profound influence 
on the structure of the flow field (cf. Robertson & Acrivos 1970; Lin, Peery & 
Schowalter 1970) and would introduce additional terms in the expression for 
Rza, e.g. terms O(Pe Re In Re) and O(Pe Re) in the two-dimensional problem and 
terms O(PeRe) and O(PeRe%) in the three-dimensional case, and perhaps even 
more important terms. Another point to consider would be the time required to 
reach a steady state following a temperature disturbance in the free stream, 
because at  high Pe the appropriate time constant within the region of closed 
streamlines should be quite substantial. The influence of these and other effects 
on the results of the present analysis remain, however, to be evaluated. 



48 A .  Nir and A. Acrivos 

This work was supported in part by grants from the National Science Founda- 
tion, OK-36515X and GK-41781. The authors are grateful to Dr E. J. Hinch of 
Cambridge University for his many helpful comments on earlier versions of this 
paper. 

REFERENCES 

BATCHELOR, G. K. 1970 The stress system in a suspension of force-free particles. J. Fluid 

BATCHELOR, G. H. 1972 Sedimentation in a dilute dispersion of spheres. J. Fluid Mech. 

B A T C ~ L O R ,  G. K. 1974 Transport properties of two-phase materials with random struc- 
ture. Ann. Rev. Fluid Mech. 6 ,  227-255. 

BATCHELOR, G. K. & GREEN, J. T. 1972 The determination of the bulk stress in a sus- 
pension of spherical particles to order ca. J. Fluid Mech. 56, 401-428. 

Cox, R. G., ZIA, I. Y. Z. & MASON, S. G. 1968 Particle motions in sheared suspensions. 
XXV: streamlines around cylinders and spheres. J .  Colloid Interface Sci. 27, 7-18. 

ERICKSEN, J. L. 1960 Transversely isotropic fluids. Kolloid-2. 173, 117-122. 
L ~ f f i ,  L. G. 1973 On the effective conductivity of a dilute suspension of spherical drops 

in the limit of low particle PBclet number. Chm. Ewng Comm. 1, 21-31. 
LIN, C. J., PEERY, J. H. & SCEOWALTER, W. R. 1970 Single shear flow around a sphere: 

inertia effects and suspension rheology. J. Fluid Mech. 44, 1-17. 
PAN, F. Y. & ACRIVOS, A. 1968 Heat transfer a t  high PBclet number in regions of closed 

streamlines. Int. J .  Heat Mass Trawfer, 11, 439-444. 
ROBERTSON, C. R. & ACRNOS, A. 1970 Low Reynolds number shear flow past a rotating 

ciroular cylinder. Part 1. Momentum transfer. J. Fluid Mech. 40, 685-703. 
ROCHA, A. & ACRNOS, A. 1973 On the effective thermal conductivity of dilute disper- 

sions. General theory for inclusions of arbitrary shape. Q w t .  J. Mech. Appl. Math. 

Mech. 41, 545-670. 

52, 245-268. 

26, 217-233. 




